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using the action of the normalizer of  the point group. 
Two point groups, arithmetically equivalent as 
n-dimensional point groups, can be arithmetically 
nonequivalent when considered as describing quasi- 
periodic structures. This gives a further partition of 
the arithmetic crystal classes. 
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Abstract 

The possibility to determine not only the magnitude 
but also the sign of three-phase structure invariants 
from nonsystematic many-beam effects in convergent- 
beam electron diffraction (CBED) patterns is dis- 
cussed. From the full dynamical many-beam intensity 
expression it is clear that it is a principal difference 
between equivalent three-beam cases of opposite sign 
of the triplet phases. However, the difference and 
thus the ability to distinguish between the two cases 
depends strongly both on the relative magnitude of 
the structure factors involved and the specimen thick- 
ness for which the actual CBED discs are obtained. 
The largest differences are obtained for a weakly 
coupled three-beam case where the intensity in the 
line of  the primary reflection, which in this case 
coincides with the kinematical two-beam position, 

0108-7673/93/020324-07506.00 

has a distinct maximum or minimum at the three- 
beam condition depending on the sign of  the triplet 
phase. In a strong coupling case where the intensity 
in the primary-reflection line near the three-beam 
condition is split into two individual segments, the 
differences are generally less and are not so obvious 
and quantitative measurements are necessary to dis- 
tinguish the two cases of  opposite sign of the triplet 
phases. Calculated examples with respect to a nonsys- 
tematic three-beam example in the noncentrosym- 
metric InP are given. 

Introduction 

A general convergent-beam electron diffraction 
(CBED) method for quantitative determination of 
structure-factor magnitudes and phases from cen- 
trosymmetric as well as noncentrosymmetric crystals 
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has recently been suggested (H0ier, Zuo, Marthinsen 
& Spence, 1988; Marthinsen, Runde, Holmestad & 
H0ier, 1991). It is based on detailed simulations of 
nonsystematic many-beam diffraction effects, which 
by least-square techniques and iterative calculations 
are fitted to the observed two-dimensional distribu- 
tions in the discs. The basis for the phase determina- 
tion is intensity asymmetries, which may appear in a 
line g with respect to the Bragg condition of strongly 
coupled reflections h near a many-beam condition. 
For qualitative purposes, these intensity variations 
may in most cases be interpreted in terms of three- 
beam interactions and by means of approximative 
analytical three-beam expressions such as, for in- 
stance, the second Bethe approximation (Zuo, H0ier 
& Spence, 1989), or Kambe's strong-coupling 
approximation (Kambe, 1957). These expressions 
indicate the basis for the suggested structure-factor- 
refinement method and that the complicated two- 
dimensional intensity variations in favorable cases 
may depend strongly on both the structure-factor 
magnitudes lull and the phases ~0g of the reflections 
h involved. As for the phase dependence, it enters 
the approximative expressions through a term cos ~, 
where ~, is the so-called three-phase structure 
invariant, i.e. ¢, = q~_g + ~Ph + q~g-h. Owing to the cosine 
term, this means that, in principle, only the absolute 
value of the phase invariant can be determined, while 
the sign is apparently not available. 

However, as will be shown below, this apparent 
sign ambiguity is a result of the approximations made. 
Examining the full dynamical many-beam intensity 
expression shows that differences should be expected 
for many-beam cases of opposite triplet phases. The 
aim of the present work is to discuss the origin of 
these differences and the general possibility of distin- 
guishing + ~ for different many-beam interactions 
(arbitrary reflections and couplings) and for different 
thicknesses. In the present work, we discuss these 
aspects by means of calculated many-beam examples 
from the noncentrosymmetric InP. Some preliminary 
results of this work have already been presented 
(Marthinsen & H0ier, 1989). 

Theory 

The BIoch-wave formulation of dynamical electron 
diffraction theory is based on a Fourier expansion of 
the periodic potential U(r) in the reciprocal-lattice 
vectors g (Bethe, 1928; Humphreys, 1979), i.e. 

U(r) : X Ug exp ( ig .  r), (1) 
g 

and the wave function of the electrons propagating 
through the crystal on Bloch form 

@(r) =X Cg exp [ i (k+g)  • r]. (2) 
g 

Schr/Sdinger equation gives the so-called fundamental 
equation of high-energy electron diffraction, viz 

[ K 2 - (  k '+g)2]C~ + X Ug_hC~=0, (3) 
h#g 

there being one such equation i for each reflection g 
considered. Here K 2= X2+ Uo, where g is the wave 
vector of the incident electron wave in vacuum and 
Uo is the mean inner crystal potential. The electron 
structure factor Ug = 87r2meVg/h 2, where Vg is a Four- 
ier coefficient of the crystal potential V(r) in V and 
m is the relativistically corrected electron mass. In 
the case of a noncentrosymmetric crystal where 
U(r) # U ( - r ) ,  U S will in general be a complex quan- 
tity with both an amplitude and a phase, i.e. 

Ug = lull  exp (i~g). (4) 

Equation (3) may be rewritten in a more convenient 
form by introducing the Anpassungen y~ and the 
excitation error Sg. The Anpassungen y~ are the fine 
adjustments at the entrance surfaces of the mean 
crystal wave vectors that are necessary to obtain 
dynamical equilibrium for the interacting Bloch 
waves in the crystal; they are defined by 

k i = K -  yin. (5) 

Here n is a unit vector along the normal of the crystal 
entrance surface. The excitation error Sg is the dis- 
tance from the reciprocal-lattice point g to the Ewald 
sphere (defined positive inside the sphere), i.e. 

2Ksg = K 2 - (K+g)  2. (6) 

Considering only reflections of the zero-order Laue 
zone (ZOLZ), inserting (5) and (6) into (3) and 
neglecting higher-order terms in the small quantities 
sg and y', we obtain the set of eigenvalue equations 

i i 2KsgCg+ ~. Ug_hCh= 2K'yic~.  (7) 
h#g 

With n beams involved there are n such equations 
that may be solved to give n Bloch-wave eigenvalues 
),i and n Bloch-wave eigenvectors with n elements 
Cg. These elements will in the general case of a 
noncentrosymmetric crystal be complex quantities, 
although the eigenvalues (without absorption) are 
real. The electron wave function for the diffracted 
beam g is then given by 

~g(r) = ~ C ~ * C g e x p [ i ( k i + g ) . r ] ,  (8) 
i 

where C~* is introduced to take care of the boundary 
conditions at the entrance surface. The intensity at 
the exit surface of a crystal slab of thickness t of a 
particular Bragg beam g is then (with absorption 
neglected) found from 

,,-~i, ~ i  r i  r i ,  e x p  [i('y i Ig(t) = ~ ~ ,-- 0 ,-- g,-- o,-- g - y J ) t ] .  (9) 
i j 

Inserting (1) and (2) into the time-independent If we explicitly take into account the fact that the 
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eigenvector components are complex quantities, (9) 
may be written as 

I,(t) = E Ic *c l 
i 

( -~ j l~ j , I  +2 E 
i> j  

(10) 

where ~ij is the phase of r , i * r~r ' J r "J*  ~-~0 "-~g~--~ O~-~g • 
The understanding of the differences between cases 

with triplet phases of opposite sign, i.e. +0, is pro- 
vided by (10). The origin of the intensity differences 
lies in the phase D,j. To understand this point, con- 
sider the two enantiomorphic forms of a noncen- 
trosymmetric space group: the structure (S) with 
atomic coordinates rj and the inverse (I)  with atomic 
coordinates r~ = - r j .  With the same choice of origin 
for both forms, the structure factors Ug will have the 
same amplitudes but phases of opposite signs, +q~. 
Consequently, the triplet phases will also have 
opposite signs. Solving a particular many-beam case 
for these two cases will then give the same eigenvalues 

-3.7.-5 -1.7.-9 

Sg = ( /  
S h = O ~  

0.0.0 

Fig. 1. The 000, -3,7,-9, -1,7,-9 three-beam case used in the 
calculated examples. Arrows show the simultaneous Bragg 
condition. 

but complex-conjugate eigenvector sets. With refer- 
ence to (10), this implies that the two cases will have 
the same magnitude but opposite signs of the phases 
0 o. This sign difference gives generally different 
intensities for the two cases. However, the magnitude 
of this difference is expected to depend strongly on 
both the diffraction condition and the thickness at 
which the experiment takes place. 

Calculated three-beam examples 

To illustrate and discuss the possibilities of 
distinguishing triplet phases of + ~ in CBED patterns, 
we have considered a particular three-beam example 
from InP, viz the 000, h = - 3 , 7 , - 5 ,  g = - 1 , 7 , - 9  case 
and the intensity variations in the - 1 , 7 , - 9  disc. A 
diagram of this diffraction case is shown in Fig. 1. 
To calculate the CBED disc intensities we have used 
the CBED-simulation program of Zuo, Gjennes & 
Spence (1989). Calculations have been performed at 
an accelerating voltage of 250 kV and at thicknesses 
of 1100 and 2200/l .  To determine the effect of chang- 
ing the sign of the invariant-phase sum and how this 
affects the CBED disc intensities for different coup- 
lings between the reflections involved, the structure- 
factor amplitudes and phases were changed in 
calculations to obtain the desired phase sums and 

ampl i tude  ratios. This investigation was particularly 
focused on cases with phase triplets of ~, = +¢r/2. In 
these cases there are, according to the second Bethe 
approximation and the Kambe approximation, no 
asymmetries in the intensities since the cos ~/, term 
for these particular values of ~/, disappears. 

In the first calculated example we have used 
theoretically correct atomic structure-factor ampli- 
tudes, while the structure-factor phases, however, 
are artificially chosen to give phase sums of +¢r/2 
and -¢r /2 ,  respectively. This is a so-called weak- 
coupling case with the amplitude ratio a = 

(a) (b) (c) 

Fig. 2. Calculated CBED disc intensity in the -1,7,-9 disc. [U_3,7,_5[IU2,0,_41/I U_1,7,_9[ ~--0.028, t = 1100 A, E = 250 keY. (a) ~ = ¢r/2; 
(b) ~, =-1r/2; (c) intensity difference between patterns in (a) and (b); AI/I = 0.98. Note that the intensity in each pattern is scaled 
to its own maximum. 
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I u-3,7,-511U2,o,-,I/Iu-,,7,-91 = 0.028. The calculated 
intensities in the g = - 1 , 7 , - 9  disc for the two cases 
at 1100/~, are shown in Figs. 2(a)  and (b). We notice 
clear differences between the two cases that should 
be easily observable: the ~ / 2  case has a large intensity 
maximum at the kinematical three-beam condition 
and the -17-/2 case has a clear minimum. The 
difference is illustrated explicitly in Fig. 2(c), which 
shows the intensity difference between the patterns 
in Figs. 2(a)  and (b). Note that the intensity in each 
of the three patterns in Fig. 2 is scaled to its own 
maximum. This is also the case for all the other 
patterns of this type presented here. As a quantitative 
measure of the difference, the quantity 

= I '  _ , r / 2 l / l '  (11) A I / I  m a x l I ~ = , / = -  ~,= , = ~ / =  

has been used, where I ~ refers to the intensity of pixel 
i. For the pattern in Fig. 2(c), A I / I  = 0.98. This large 
difference is also seen in Fig. 3, where the intensity 
along the ridge of the g = - 1 , 7 , - 9  line through the 
three-beam condition is shown. In this case, the struc- 
ture-factor amplitudes and their ratios are such that 
the position of maximum intensity coincides with 
the kinematical two-beam position (Sg=0) for the 
- 1 , 7 , - 9  line except very near the three-beam condi- 

100 

" 40 
¢ -  

m 

20 

0 S h  

Fig. 3. Intensity variation along the ridge of the -1,7,-9 line in 
Figs. 2(a) and (b). 

tion for the ~ = -I7-/2 case. The result of going along 
the kinematical-line position in this region is illus- 
trated by the lower curve in Fig. 3. This is a so-called 
weak-coupling case and the results are in agreement 
with the results of  Bird, James & Preston (1987) using 
a kinematic weak-beam approximation to model 
three-beam phase effects in CBED. 

However, the magnitude of the differences is highly 
dependent  on the specimen thickness. Figs. 4(a)  and 
(b) show the same diffraction cases as in Figs. 2(a)  
and (b) but at 2200 A. One sees immediately that the 
differences are not so pronounced as in Fig. 2 ( A I / I  = 
0.43). The differences, shown in Fig. 4(c), are both 
less pronounced and more localized than in Fig. 2(c). 
The intensity variations along the kinematical-line 
position for the two cases are shown in Fig. 5. It is 
clearly seen that the relative differences are much less 
than in Fig. 3 and the differences are less obvious 
due to the rapid intensity oscillations near the three- 
beam position. This means that for this particular 
example it is more difficult to distinguish the two 
cases of opposite signs of  the triplet phases at a 
thickness of  2200 than at 1100 A. 

In the second example, the structure-factor ampli- 
tude for the coupling reflection, i.e. U2,o,-4, is 
artificially increased by a factor of  8. The phases, 
however, are kept unchanged. The amplitude ratio a 
is now 0.22, and in this case, which is a strong- 
coupling case, the - 1 , 7 , - 9  line splits into two seg- 
ments with a width between the two segments propor- 
tional to U2,0,-4 (Gj0nnes & H0ier, 1971). The 
resulting CBED disc intensities at 1100 ,~ are shown 
in Figs. 6(a)  and (b). It is difficult to observe any 
qualitative differences, although the quantitative 
differences, as seen from Fig. 6(c), are quite clear. 
The relative differences ( A I / I )  are about 20-25% at 
maximum and are limited to the regions of maximum 
intensity, i.e. along the split-intensity hyperbolas. 
However, with good quantitative intensity data it 
should be fairly easy to distinguish the two cases of 

.:...: " r~, ~ ~.  ~ . . "  

• ,~ '~F~* . _ . . .  ; 

";.- . ,~--: , . . , ,-~~ :,~ 

"p  

(a) (b) (c) 

Fig. 4. Calculated CBED disc intensity in the -1,7,-9 disc. I U_3,~_51JU2,o,_41/I U_n,7,_91 = 0.028, t = 2200/~, E = 250 keY. (a) ~ = ¢r/2; 
(b) ~=-7r/2; (c) intensity difference between patterns in (a) and (b); AI/I =0.43. Intensity in each pattern scaled to its own 
maximum. 
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opposi te  sign of  the phase  triplet. Taking the intensity 
profiles along the kinemat ical  line posi t ion of  the 
- 1 , 7 , - 9  line in this case gives pract ical ly  no 
difference. 

The cor responding  intensi ty variat ions at 2200/~, 
for this example  with a = 0.22 are shown in Fig. 7. 
As in the first example ,  the differences are less at this 

100 

A 
t # }  

° ~  

:-, 9o 

"~ 80 

e -  

70 

, - -hi2 

* ~12 

Sh 

Fig. 5. Intensity variation along the ridge of the -1,7,-9 line in 
Figs. 4(a) and (b). 

thickness than  at 1100 A.  In this ca se , t he  differences 
are only abou t  10% at max imum.  So a l though there 
is a difference, and it is in principle possible to distin- 
guish the two cases, it m a y  be very difficult to carry 
out in practice.  It will require very good exper iments  
and accura te  and  reliable quant i ta t ive intensity data.  

Finally,  we carr ied out  the same calculat ions for 
the present  th ree-beam diffraction case using the cor- 
rect s t ructure-factor  ampl i tudes  and  phases  and the 
same case with opposi te  signs of  the phases.  The 
triplet phases  are then either +39.2 or - 3 9 . 2  ° . The 
calculated C B E D  disc intensities at 1100 and  2200 A 
are shown in Fig. 8 together  with the cor responding  
difference maps.  In both cases, the differences are 
reasonably  large, a l though not so obvious from a 
quali tat ive visual inspect ion alone. The relative 
differences are approx ima te ly  three times as large at 
1100 as at 2200 A ( A I / I  = 0.65 and  0.20, respectively).  
At 2200 tl, the differences are also localized to a more 
limited region than at 1100 tl, and  for that  reason it 
may  be more  difficult to dist inguish the two cases 
o f + ~ .  

(a) (b) (c) 

Fig. 6. Calculated CBED disc intensity in the -1,7,-9 disc. ]U_3,7_sllU2,o,_41/] U_t,7,_gl = 0.22, t = 1100 •, E = 250 keY. (a) ~, = ~-/2; 
(b) ~=- I r /2 ;  (c) intensity difference between patterns in (a) and (b); AI/ I  =0.23. Intensity in each pattern scaled to its own 
maximum. 

(a) (b) (c) 

Fig. 7. Calculated CBED disc intensity in the -1,7,-9 disc. I u-a,7,-sllU2,o,-41/I U-bT,-gl = 0.22, t = 2200/~,, E = 250 key. (a) ~ = ~r/2; 
(b) ~b=-lr/2; (c) intensity difference between patterns in (a) and (b); AI/I=O.1. Intensity in each pattern scaled to its own 
maximum. 
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Discussion and concluding remarks 

We have in the present work discussed the possibility 
of determining not only the magnitude but also the 
sign of three-phase structure invariants from nonsys- 
tematic many-beam effects in CBED patterns. It is 
demonstrated that this sign information, in principle, 
is always present; however, the ease with which this 
sign information may be retrieved from experiments 
depends strongly on the magnitude of the individual 
structure factors involved and on the thickness 
at which the CBED patterns are obtained. The 
difference that may be observed between three-beam 
cases of opposite signs for their triplet phases is in 
general only accounted for by the full dynamical  
many-beam intensity expression. However, in the 
special case of small thicknesses and /o r  weak coup- 
lings, the kinematical weak-beam approximation of 
Bird, James & Preston (1987) is fully adequate. The 
second Bethe approximation and Kambe's  weak- 
beam approximation, however, cannot account for 
the effect of sign difference. Both these approximative 
analytical approaches are based on approximations 

"X, 

that eliminate the intensity differences caused by a 
sign shift in the triplet phase. 

It should be mentioned in this connection that the 
phase factor /'/ij in (10) is also the origin of the 
differences in the +g CBED disc intensities from a 
noncentrosymmetric crystal, which is actually the 
basis for determination of  noncentrosymmetry with 
the CBED method (Buxton, Eades, Steeds & Rack- 
ham, 1976; Marthinsen, 1991). Since this phase factor 
appears in the thickness-dependent inter-Bloch-wave 
terms it also explains why observation of noncen- 
trosymmetry or determination of enantiomorphs js in 
general difficult from Kikuchi patterns and electron 
channeling patterns (ECP),  where these terms are 
expected to be integrated out. However, this is not 
always the case, as deviations from centrosymmetry 
have also been observed from electron channelling 
patterns (Marthinsen & H¢ier, 1988). 

For a given thickness, the most pronounced 
differences between cases of opposite sign of the 
triplet phases will be found where the thickness- 
dependent  terms in (10) are largest. In general, this 
is along the positions of maximum intensity. In a 

(a) (b) (c) 

(d) (e) (f) 

Fig. 8. Calculated CBED disc intensity in the -1,7,-9 disc. I U-3,7,-511U2,o,-,I/I U-t,7,-91 = 0.028, E = 250 keV. (a) ~ = 39.2 °, t = 1100 A; 
(b) 6=-39.2 °, t= 1100 A; (c) intensity difference between patterns in (a) and (b); AI/ !  =0.65. (d) ~ =39.2 °, t =2200 A; (e) 
~b =-39.2 °, t = 2200 A; (f) intensity difference between patterns in (d) and (e); AI/I  =0.2. Intensity in each pattern scaled to its 
own maximum. 
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weak-coupling case this coincides more or less with 
the kinematical line position of the line in question, 
however in the case of strong coupling, a line g will 
split into two branches and each of these may be 
considerably displaced from the kinematical two- 
beam position near the three- (many-) beam condition 
(H¢ier, Zuo, Marthinsen & Spence, 1988). The largest 
differences between cases of opposite signs of the 
triplet phase seems to be for the former case where 
the two cases have a clear maximum or minimum 
near the kinematical three-beam condition. However, 
in the strong-coupling case relatively large quantita- 
tive differences may also be observed but the magni- 
tude of the differences and thus the possibility to 
distinguish cases of opposite triplet phases is strongly 
dependent on the thickness. 

However, it is difficult to find any simple rule as 
to which thicknesses give the largest differences. This 
is because the intensity difference in general is the 
result of the difference between several thickness- 
dependent terms in the intensity expression [(10)], 
each depending on the magnitude of a product of 
eigenvector components and a cosine term for which 
the argument is a sum of a t-dependent term and the 
phase of the product of eigenvector components in 
the prefactor. It is impossible to draw any general 
conclusions about which thicknesses maximize this 
complicated difference term. 

In general, the determination of the correct sign of 
a triplet phase has to be based on high-quality experi- 
ments and quantitative intensity recordings. To avoid 
thickness averaging, which may blur the intensity 
variations of interest, CBED patterns should be 
obtained from parallel-sided specimens or the area 
from which the patterns are obtained should be so 
small that possible thickness variations are negligible. 

Experiments should further be carded out at liquid- 
nitrogen temperature using a cooling holder to 
minimize thermal diffuse scattering. Finally, quantita- 
tive comparisons should preferentially be based on 
digitized energy-filtered intensity data. Instrumenta- 
tion for acquiring intensity data in this latter way are 
now under development and the use of such systems 
will increase the potential for quantitative CBED 
considerably in the future (see, for example, Spence, 
Mayer & Zuo, 1991; Marthinsen, Runde, Holmestad 
& H¢ier, 1991). 
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Abstract 

A simple relationship is reported defining the ratio 
of dynamical and kinematic values of the integrated 
reflectivity in absorbing single crystals in terms of the 

product /.~,~, where /zn is the linear absorption 
coefficient for depth measured along the normal to 
the diffracting crystal's surface and ~ is the extinction 
distance in a nonabsorbing crystal. This relationship 
is interpreted through comparison with existing 
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